ICCPP-STATISTICS - Linear Regression

Vishal Lohchab

Scientific Assistant of Prof. Dr. Hans-Werner Gessmann Director ICCPP International

Francis Galton (1822-1911) Linear Regression

- Linear regression is the most widely used statistical technique; it is a way to model a relationship between two sets of variables.
- Linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables.

Simple linear regression:

l dependent variable (interval or ratio),l independent variable (interval or ratio or dichotomous).

Multiple linear regression:

1 dependent variable (interval or ratio),
2+ independent variables (interval or ratio or dichotomous).

y = lpha + eta x

- \blacksquare B = slope
- $\bullet \alpha = y$ -intercept
- Y = y-coordinate
- **x** = x-coordinate

Use of Linear Regression

- Linear regression is used to estimate the relationship between two quantitative variables. You can use simple linear regression when you want to know:
 - How strong the relationship is between two variables (e.g. the relationship between rainfall and soil erosion).

Use of Multiple Linear Regression

- Multiple linear regression is used to estimate the relationship between two or more independent variables and one dependent variable.
- Multiple linear regression is a statistical technique that uses several explanatory variables to predict the outcome of a response variable.

1. Simple linear regression is a parametric test, meaning that it makes certain assumptions about the data.

These assumptions are:

+ Assumptions

Homogeneity of variance (homoscedasticity): the size of the error in our prediction doesn't change significantly across the values of the independent variable.

Assumptions

Independence of observations: the observations in the dataset were collected using statistically valid sampling methods, and there are no hidden relationships among observations.

Assumptions

- Normality: The data follows a normal distribution.
- The relationship between the independent and dependent variable is linear: the line of best fit through the data points is a straight line (rather than a curve or some sort of grouping factor).

Assumptions

- Normality: The data follows a normal distribution.
- The relationship between the independent and dependent variable is linear: the line of best fit through the data points is a straight line (rather than a curve or some sort of grouping factor).

Step 1

Make a chart of your data, filling in the columns in the same way as you would fill in the chart if you were finding the Pearson's Correlation Coefficient.

SUBJECT	AGE X	GLUCOSE LEVEL Y	ХҮ	x ²	Y ²
1	43	99	4257	1849	9801
2	21	65	1365	441	4225
3	25	79	1975	625	6241
4	42	75	3150	1764	5625
5	57	87	4959	3249	7569
6	59	81	4779	3481	6561
Σ	247	486	20485	11409	40022

Step 1.2 From the table $\Sigma x = 247$, $\Sigma y = 486$, $\Sigma xy = 20485$, $\Sigma x2 = 11409$, $\Sigma y2 = 40022$. n is the sample size (6, in our case).

Step 2 Use the following equations to find a and b.

$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma x y)}{n(\Sigma x^2) - (\Sigma x)^2}$$
$$b = \frac{n(\Sigma x y) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)(\Sigma y)}$$

a = 65.1416

b = .385225

Step 2.1 Find a: ((486 × 11,409) – ((247 × 20,485)) / 6 (11,409) – 247²)

484979 / 7445

=65.14

Step 2.2 Find b: (6(20,485) - (247 × 486)) / (6 (11409) - 247²) (122,910 - 120,042) / 68,454 - 247²

2,868 / 7,445

= .385225

Step 3 Insert the values into the equation.

y' = a + bx

y' = 65.14 + .385225x

- That's how to find a linear regression equation by hand!
- * Note that this example has a low correlation coefficient, and therefore wouldn't be too good at predicting anything.

https://en.wikipedia.org/wiki/Francis_Galton, date 30.11.21, 14:30 h MET

Edwards, A. L. An Introduction to Linear Regression and Correlation. San Francisco, CA: W. H. Freeman, 1976.

Edwards, A. L. Multiple Regression and the Analysis of Variance and Covariance. San Francisco, CA: W. H. Freeman, 1979.

Stephanie Glen. "Welcome to Statistics How To!" From StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/, date 30.11.21, 14:30 h MET