+ ICCPP-STATISTICS - A test

Vishal Lohchab

Scientific Assistant of Prof. Dr. Hans-Werner Gessmann Director ICCPP International

A-test is a statistical test which is used to check the mean difference of two dependent (correlating) samples for statistical significance.

The A-test is suitable for the two-sided test of the null hypothesis

$$\mathbf{H}_{\mathbf{o}}: \mu_1 - \mu_2 = \Delta = \mathbf{0}.$$

The test statistic A is derived from the t-statistic, so that the A-test always leads to the same conclusions regarding the significance as the t-test for dependent samples.

Advantage

The advantage of the A-test lies in the much simpler calculation of the test size.

There are two dependent samples; or to put it another way: there is a population of pairs of measured values and this population has become a random sample was drawn.

The differences between the pairs of measured values D_i (where D_i = X_i1 - X_i2) are normally distributed in the population.

The two samples come from total populations with the same mean values.

Ho :
$$\mu \mathbf{l} = \mu \mathbf{2}$$
 ; or $\mu \mathbf{l} - \mu \mathbf{2} = \Delta = \mathbf{0}$

Or in other words:
The sample with the mean D (D = mean of the differences = x ⋅ 1 - x ⋅ 2) comes from a population with the mean Δ = 0.

 $Ho: \Delta = 0$

+ Alternative hypothesis

$$\blacksquare \mathbf{H}_1: \mu \mathbf{l} \neq \mu \mathbf{2}$$
;

or
$$\mu 1 - \mu 2 = \Delta \neq 0$$

or $\Delta \neq 0$

(A) Arrangement of the data

The data from the investigation can be arranged as follows:

Measured value pair no.	Condition (sample 1)	Condition (sample 2)	Difference between the pairs of measured values		
	Column l	Column 2	Column 3	Column 4	
1	X_1 l	X ₁ 2	$D_1 = X_1 1 - X_1 2$		
2	X ₂ 1	X ₂ 2	$D_2 = X_2 1 - X_2 2$		
•	•	•	٠	•	
•	•	•	•	•	
•	•	•	•	•	
1	$X_i l$	X ₁ 2	$D_i = X_i 1 - X_i 2$		
٠	•	•	•	•	
٠	•	•	•	٠	
•	•	•	٠	٠	
n	$X_n l$	X _n 2	$D_n = X_n 1 - X_n 2$		

+

■ (B) Overview of the calculations:

The null hypothesis is tested against H1 using the following test statistic:

Where:

 $D_i = X_i l - X_i 2$ = difference between the measured values in the measured value pair (test subjects) i.

Degree of freedom: FG = n - 1

(where n = number of value pairs)

The null hypothesis is rejected if the calculated A-value is equal to or smaller than the table value in the A-table belonging to "a" and the degrees of freedom.

For a clearer execution of the calculation steps 1-4 we create a table (like the one in section A).

Step 1

For each of the n pairs of measured values, form the difference Di from the two measured values, i. e.

Calculation steps

For each pair, subtract the measured value of term 2 (column 2 of the table) from the measured value under condition 2 (column 2 of the table) from the measured value under both conditions 2 (column 1 of the table).

The differences Di are entered in column 3 of the table.

$$D_1 = X_1 1 - X_1 2, ..., D_i = X_i 1 - X_i 2, ..., D_n = X_n 1 - X_n 2$$

Square the differences Di calculated at 1, i.e. square the values in column 3 of the table.

Enter the squared differences in column 4 of the table.

 $D\downarrow1\uparrow2$,..., $D\downarrowi\uparrow2$,..., $D\downarrown\uparrow2$

Add up the n differences calculated for 1, i.e. add up the values in column 3 of the table.

That is the sum of the differences.

Add up the values $D\downarrow i12$ calculated for 2, i.e. add up the values in column 4 of the table.

That gives the sum of the squared differences.

$$\sum_{i}^{n} D_{i}^{2}$$

Calculate the value of the test statistic A by plugging the results of 3 and 4 into the following formula 1:

$$A = \frac{\underline{(4)}}{\underline{(3)}^2} = \frac{\sum_{i=1}^{n} p_i^2}{\left(\sum_{i=1}^{n} p_i\right)^2}$$

Determine the number of degrees of freedom: FG = n - 1

The A value calculated for 5 is now compared with the table value in the A table (Table 5). This table value is

$$A_a; n - 1$$

Decision about the null hypothesis

If the A value calculated at 5 is greater than the table attendant A_a ; n -1 ' then the null hypothesis is maintained.

If the calculated A value is equal to or less than the table value A_a ; n -1 ' then the null hypothesis is rejected.

This leads to the acceptance of the alternative hypothesis:

$$\mathbf{H}_1: \mu \mathbf{l} - \mu \mathbf{2} = \Delta \neq \mathbf{0} \; .$$

Lüroth, J. (1876). "Vergleichung von zwei Werthen des wahrscheinlichen Fehlers". Astronomische Nachrichten (in German). 87 (14): 209–220. Bibcode: 1876AN.....87..209L. doi:10.1002/asna. 18760871402

Salkind, N. (2016). Statistics for People Who (Think They) Hate Statistics: Using Microsoft Excel 4th Edition.

Stephanie Glen. "Welcome to Statistics How To!" From StatisticsHowTo.com: Elementary Statistics for the rest of us! <u>https://www.statisticshowto.com/</u> - 04.09.21 20:00 MET