ICCPP-STATISTICS - Independent Samples T Test

Vishal Lohchab

Scientific Assistant of
Prof. Dr. Hans-Werner Gessmann
Director ICCPP International

William Sealy Gosset (1876-1937)
 Independent Samples T Test

Definition

- The independent samples test (also called the unpaired samples t test) is the most common form of the T test. It helps you to compare the means of two sets of data.

Independent Samples T Test

$$
t=\sqrt{\left[\frac{\mu_{A}-\mu_{B}}{\left[\frac{\left.\left(\Sigma A^{2}-\frac{(\Sigma A)^{2}}{n_{A}}\right)+\left(\Sigma B^{2}-\frac{(\Sigma B)^{2}}{n_{B}}\right)\right] \cdot\left[\frac{1}{n_{A}}+\frac{1}{n_{B}}\right]}{n_{A}+n_{B}-2}\right]}\right.}
$$

T Test types

One sample t test: used to compare a result to an expected value.

Paired t test (dependent samples): used to compare related observations.

You should use this test when:

- You do not know the population mean or standard deviation.
- You have two independent, separate samples.

Assumptions

\pm.

Assumption of Independence: you need two independent, categorical groups that represent your independent variable.

Assumptions

2.

Assumption of normality: the dependent variable should be approximately normally distributed. The dependent variable should also be measured on a continuous scale.

Assumptions

Assumption of Homogeneity of Variance: The variances of the dependent variable should be equal.

Example

Calculate an independent samples t test for the following data sets:

Data set A: 1,2,2,3,3,4,4,5,5,6
Data set B: 1,2,4,5,5,5,6,6,7,9

Solution Step Wise

Step 1
Sum the two groups:
$A: 1+2+2+3+3+4+4+5+5+6=35$
B: $1+2+4+5+5+5+6+6+7+9=50$

Solution Step Wise

Step 2
Square the sums from Step 1:
$35^{2}=1225$
$49^{2}=2500$
Set these numbers aside for a moment

Solution Step Wise

Step 3
Calculate the means for the two groups:
A: $(1+2+2+3+3+4+4+5+5+6) / 10=35 / 10=$ 3.5

B: $(1+2+4+5+5+5+6+6+7+9)=50 / 10=5$

Set these numbers aside for a moment.

Solution Step Wise

Step 4
Square the individual scores and then add them up:
A: $1^{1}+2^{2}+2^{2}+3^{3}+3^{3}+4^{4}+4^{4}+5^{5}+5^{5}+6^{6}=145$
B: $1^{2}+2^{2}+4^{4}+5^{5}+5^{5}+5^{5}+6^{6}+6^{6}+7^{7}+9^{9}=298$
Set these numbers aside for a moment.

Solution Step Wise

Step 5
Insert your numbers into the following formula and solve:

$$
t=\sqrt{\left[\frac{\mu_{A}-\mu_{B}}{\left[\frac{\left.\left(\Sigma A^{2}-\frac{(\Sigma A)^{2}}{n_{A}}\right)+\left(\Sigma B^{2}-\frac{(\Sigma B)^{2}}{n_{B}}\right)\right] \cdot\left[\frac{1}{n_{A}}+\frac{1}{n_{B}}\right]}{n_{B}-2}\right.}\right.}
$$

Solution Step Wise

$\left(\sum A\right)^{2}: \quad$ Sum of data set A, squared (Step 2)
$\left(\sum B\right)^{2}: \quad$ Sum of data set B, squared (Step 2)
$\mu \mathrm{A}$:
$\mu \mathrm{B}$:
\sum A2
Σ B2:
nA:
nB:
Mean of data set A (Step 3)
Mean of data set B (Step 3)
Sum of the squares of data set \mathbb{A} (Step 4)
Sum of the squares of data set B (Step 4)
Number of items in data set A
Number of items in data set B

Solution Step Wise

Insert your numbers into the following formula and solve:

$$
\begin{aligned}
& t=\sqrt{\left[\frac{\left(\frac{\left.\left(145-\frac{1225}{10}\right)+\left(298-\frac{2500}{10}\right)\right] \cdot\left[\frac{1}{10}+\frac{1}{10}\right]}{10+10-2}\right]}{}\right.} \\
& t=\sqrt{\left[\frac{-1.5}{\left[\frac{(145-122.5)+(298-250)] \cdot\left[\frac{2}{10}\right]}{18}\right]}\right.} \\
& t=\sqrt{3.917 \cdot \frac{2}{10}}=\sqrt{0.783}=-1.69 \\
&
\end{aligned}
$$

Solution Step Wise

Step 6
Find the Degrees of freedom

$$
(n A-1+n B-1)=18
$$

Solution Step Wise

Step 7

Look up your degrees of freedom in the t-table. If you don't know what your alpha level is, use 5\% (0.05).

18 degrees of freedom at an alpha level of $0.05=$ 2.10

Solution Step Wise

Step 8

Compare your calculated value (Step 5) to your table value (Step 7). The calculated value of -1.79 is less than the cutoff of 2.10 from the table.
Therefore p > . 05 .
As the p-value is greater than the alpha level, we cannot conclude that there is a difference between means.

References

Everitt, B. S.; Skrondal, A. (2010), The Cambridge Dictionary of Statistics, Cambridge University Press.

Gonick, L. (1993). The Cartoon Guide to Statistics. HarperPerennial.
Levine, D. (2014). Even You Can Learn Statistics and Analytics: An Easy to Understand Guide to Statistics and Analytics 3rd Edition. Pearson FT Press

Salkind, N. (2016). Statistics for People Who (Think They) Hate Statistics: Using Microsoft Excel 4th Edition.

Stephanie Glen. "Welcome to Statistics How To!"
From StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/

