ICCPP-STATISTICS

- Wilcoxon signed rank test

Vishal Lohchab

Scientific Assistant of Prof. Dr. Hans-Werner Gessmann Director ICCPP International

Frank Wilcoxon (1892-1965)

Wilcoxon signed rank test

Definition

■ The Wilcoxon test, which can refer to either the Rank Sum test or the Signed Rank test version, is a nonparametric statistical test that compares two paired groups.

+

Wilcoxon signed rank test

$$W = \sum_{i=1}^{N_r} [\operatorname{sgn}(x_{2,i} - x_{1,i}) \cdot R_i]$$

W = test statistic

 N_r = sample size, excluding pairs where x1 = x2

sgn = sign function

 $oldsymbol{x_{1,i}, x_{2,i}}$ = corresponding ranked pairs from two distributions

 $R_i = \text{rank i}$

Test Statistics

■ The test statistic for the Wilcoxon Signed Rank Test is W, defined as the smaller of W+ (sum of the positive ranks) and W- (sum of the negative ranks).

If the null hypothesis is true, we expect to see similar numbers of lower and higher ranks that are both positive and negative (i.e., W+ and W- would be similar).

Assumptions

1.

Data are paired and come from the same population.

Assumptions

2.

Each pair is chosen randomly and independently.

Assumptions

3.

The data are measured on at least an interval scale when, as is usual, within-pair differences are calculated to perform the test (though it does suffice that within-pair comparisons are on an ordinal scale)..

Requirements for the test

- Data must be matched.
- The dependent variable must be continuous (i.e. you must be able to distinguish between values at the nth decimal place).
- You should have no tied ranks for maximum accuracy. If ranks are tied, there is a workaround.

Example

Is there a difference between the median values for the following sets of treatment data for the twelve

groups?

Group #	Treatment 1	Treatment 2
1	2.5	4.0
2	3.5	5.6
	2.9	3.2
4	2.1	1.9
5.	6.9	9.5
6	2.4	2.3
7.	4.9	6.7
8	6.6	6.0
9.	2.0	3.5
10	2.0	4.0
11	5.8	8.1
12	7.5	19.9

Step 1

Subtract treatment 2 from treatment 1 to get the

differences:

Group #	Treatment 1	Treatment 2	Difference
1	2.5	4.0	1.5
2	3.5	5.6	2.1
3	2.9	3.2	0.3
4	2.1	1.9	-0.2
5.	6.9	9.5	2.6
6	2.4	2.3	-0.1
7.	4.9	6.7	1.8
8	6.6	6.0	-0.6
9.	2.0	3.5	1.5
10	2.0	4.0	2.0
11	5.8	8.1	2.3
12	7.5	19.9	12.4

Step 2

Place the differences in order (column 2 in the picture below), and then rank them. Ignore the sign when placing in rank order.

Rank	Ds in Order
1	0.1
2	0.2
3.	0.3
4.	0.6
5	1.5
6.	1.5
7.	1.8
8	2.0
9.	2.1
10.	2.3
11.	2.6
12	12.4

Step 3

Make a third column and note the sign of the difference.

Rank	Ds in Order	Sign
1	0.1	-
2	0.2	-
3.	0.3	+
4.	0.6	_
5	1.5	+
6.	1.5	+
7.	1.8	+
8	2.0	+
9.	2.1	+
10.	2.3	+
11.	2.6	+
12	12.4	+

The next two steps calculate the Wilcoxon signed rank sums

Step 4

Calculate the sum of the ranks of the negative differences (the ones with the negative sign in the Step 3 chart). You're adding up the ranks here, not the actual differences:

$$W-=1+2+4=7$$

+

Solution Step Wise

Step 5

Calculate the sum of the ranks of the positive differences (the ones with the positive sign in the Step 3 chart).

$$W+ = 3 + 5.5 + 5.5 + 7 + 8 + 9 + 10 + 11 + 12 = 71$$

References

Breslow N (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57(3), 579–594.

Gonick L (1993). The Cartoon Guide to Statistics. HarperPerennial. Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences, Wiley.

Everitt B S, Skrondal, A (2010). The Cambridge Dictionary of Statistics, Cambridge University Press.

Vogt W P (2005). Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences. SAGE.

Stephanie G. "Welcome to Statistics How To!"
From StatisticsHowTo.com: Elementary Statistics for the rest of us!
https://www.statisticshowto.com/