
ICCPP-STATISTICS

- Spearman Rho

Vishal Lohchab

Scientific Assistant of Prof. Dr. Hans-Werner Gessmann Director ICCPP International

Edmund Robert Spearman (1863-1945)

Spearman rho - Rank Correlation

+

Spearman's Rho

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

P = Spearman's rank correlation coefficient

 $oldsymbol{d_i}$ = difference between the two ranks of each observation

n = number of observations

The Spearman's rank coefficient of correlation is a nonparametric measurement

- (statistical dependence of ranking between two variables)
- named after Charles Spearman, often denoted by the Greek letter ' ρ ' (rho)

Assumptions

1.

Your data must be ordinal, interval or ratio.

*Assumptions

2.

Your data have to be monotonically related.

+ Assumptions

This means:

If one variable increases (or decreases), the other variable also increases (or decreases).

+ Example

The scores for nine students in physics and maths are as follows

Physics: 35, 23, 47, 17, 10, 43, 9, 6, 28

Mathematics: 30, 33, 45, 23, 8, 49, 12, 4, 31

Solution Step Wise

Step 1 Find the ranks for each individual subject. I used the Excel rank function to find the ranks. If you want to rank by hand, order the scores from greatest to smallest; assign the rank 1 to the highest score, 2 to the next highest and so on.

Physics	Rank	Math	Rank	
35	3	30	5	
23	5	33	3	
47	1	45	2	
17	6	23	6	
10	7	8	8	
43	2	49	1	
9	8	12	7	
6	9	4	9	
28	4	31	4	

[4]

Solution Step Wise

Step 2 Add a third column, d, to your data. d is the difference between the ranks. For example, the first student's physics rank is 3 and maths rank is 5, so the difference is 3. In a fourth column, square your d values.

Physics	Rank	Math	Rank	d	d squared
35	3	30	5	2	4
23	5	33	3	2	4
47	1	45	2	1	1
17	6	23	6	0	0
10	7	8	8	1	1
43	2	49	1	1	1
9	8	12	7	1	1
6	9	4	9	0	0
28	4	31	4	0	0

+

Solution Step Wise

Step 3 Sum (add up) all of your d-squared values.

$$4 + 4 + 1 + 0 + 1 + 1 + 1 + 0 + 0 = 12$$

You'll need this for the formula (Σ d² is "the sum of d-squared values").

*Solution Step Wise

Step 4 Insert the values into the formula.

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

Solution Step Wise

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

$$= 1 - (6*12)/(9(81-1))$$

$$= 1 - 72/720$$

$$= 1-0.1$$

$$= 0.9$$

The Spearman Rank Correlation for this set of data is 0.9

+ References

- [1] Clef, T. (2013). Exploratory Data Analysis in Business and Economics: An Introduction Using SPSS, Stata, and Excel. Springer Science and Business Media.
- [2] Kinnear and Gray (1999). SPSS for Windows Made Simple. Taylor and Francis.
- [3] Rees, D. (2000). Essential Statistics. CRC Press.
- [4] Stephanie Glen. "Welcome to Statistics How To!" From StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/